Solutions

- Concentration & Dilution
- Micropipetting & Assays

A Solution

- Substances can react when they encounter each other
 - Must be fluid or dissolved in a fluid
- Solution: solutes dissolved in solvent
 - Aqueous solution: solvent is water
- **Concentration**: amount of a solute in the total volume of solution

Concentration

- = Number of solutes in a given volume
- · Measurable units
 - Milliliters per 100ml (v%)
 - Grams per 100ml (g%)
 - Micrograms per milliliter (µg/ml)
 - Parts per thousand (ppt)
- But a gram of sucrose has fewer molecules than a gram of glucose,
 - so 1% sucrose ≠ 1% glucose concentration

Concentration

- = Number of solutes in a given volume
- "Real" units:

number of solute molecules per volume

- Molar (M)
 - = Moles per liter = millimoles per milliliter
- 1 Mole = $6.023x10^{23}$
- 1M glucose = 6.023x10²³ glucose molecules per 1 liter of total solution
- 1 M glucose = 1M sucrose in concentration
 - $= 1M = 10^3 \text{ mM} = 10^6 \mu\text{M}$

Concentration

But how can you make a "real" concentration? You cannot count the molecules!

Conversion factor

- = molecular mass [molecular weight (MW)]
- = daltons per molecule
- = grams per mole of molecules

e.g., $MW_{glucose} = 180$.

I.e., 1 mole of glucose weighs 180 grams

Concentration

So, say you want 10 ml of 2M glucose solution:

Remember, $MW_{glucose} = 180 \text{ g/mole}$.

10ml x 2 moles glucose/1000 ml x 180g glucose/mole glucose = 3.6 g glucose needed.

What is the "real" concentration of a 1% glucose solution?

1 g glucose/100 ml x 1 mole/180 g x 1000ml/L = $0.056 \underline{M} = 56 \underline{mM}$ glucose solution.

Heyer 1

Changing Concentration: Dilution

$$C_1V_1=C_2V_2$$

C₁: concentration of the initial solution

V₁: volume of the initial solution

C2: concentration of the final solution

V₂: volume of the final solution

Changing Concentration: Dilution

$$C_1V_1=C_2V_2$$

$$\therefore C_1 = C_2 V_2 / V_1$$

$$\therefore$$
 C₂= C₁ V₁/ V₂

$$\therefore V_1 = V_2 C_2 / C_1$$

$$\therefore V_2 = V_1 C_1 / C_2$$

Heyer 2

Heyer 3

Protein Concentration of Fish Tissue Homogenates by Qubit Fluorescence Assay

Sample ¹	Volume extract in assay ²	[protein] in assay tube ³	[protein] in homogenate sample ⁴	[protein] in "gel-ready" tube⁵	μl "gel-ready" solution to load onto gel well ⁶	μg fish protein loaded in well ⁷

- 1. "Sample" is the name of the fish and/or tissue.
- 2. Volume of centrifuged fish tissue homogenate added to the protein assay tube. Should be 10µl according to the procedure, but may be less if re-assay because of high concentration.
- 3. The protein concentration displayed on the Qubit fluorometer. **Be sure to write down the units!**
- 4. The protein concentration in the centrifuged fish tissue homogenate sample tube calculated from the assay concentration.
- **5**. The protein concentration in the sample tube prepared for electrophoreses according to the "Sample preparation protocol".
- 6. Volume of protein sample prepared for electrophoreses to be loaded in the gel well. You should attempt to load the same protein amount in each sample well, ideally $60\mu g$ protein, but cannot exceed $25\mu l$ per well.
- 7. Actual amount (µg) of fish protein loaded in that well. Ideally should be $60\mu g$, but may be less if concentration is $<60\mu g/25\mu l$.