Environmental Science CLASS 5 (Journal Entry 5)

- **1:30-2:15**:
 - 1. Reminders:
 - 1. Did your team email me with team name and team members? If not, please do so in class today
 - 2. Quiz 1 next Thursday <u>Open Journal</u>
 - Is your journal complete?
 - 2. Check out my faculty website
 - **3.** Slides: Introduction to Ecology and Ecosystems

• 2:15-3:05:

- 1. <u>Team Activity:</u> Ecosystem Structure
- 2. Each team share 1 terrestrial and 1 aquatic system with class

Ecology & Ecosystems

Four Global Challenges

1. Increasing population growth

2. Declining Ecosystems

- Ecosystem resources and services, aka, natural wealth, in jeopardy
- Ecology: A branch of Env Sci
- 3. Global Warming and Climate Change
- 4. Loss of Biodiversity
 - Loss of life at many scales

Ecology

Two Greek words

"oikos" = "house" or "place to <u>live</u>"

"logos" = "systematic study of"

Ecology: Study of the Earth as a System that supports ALL life

System – A familiar example

Hierarchy

- System: Human body
- Sub-systems: Digestive, Circulatory, Endocrine, ...
- Components:
 - Mouth, Stomach, Digestive Enzymes
 - Endocrine glands, Hormones
- **Processes:** Blood circulation, Nerve impulse transmission, Muscle contraction, ...

Earth's Systems

Atmospheric-Atmosphere Hydrosphere layers, air and its components **Biosphere** (Living systems) Land, soil, chemicals found in/on land Lithosphere © 2011 Pearson Education, Inc

Water bodies, water and chemicals dissolved in it Processes Geological Non-living systems **Biological** Biosphere \bullet **Bio-geo-logical** Biosphere ↔ Non-living systems

Ecosystem = Biosphere + Bio-geo-logical Interactions Ecology = Study of Ecosystem

Understanding Ecosystems

How are they structured? Components How do they work? Processes Why are they important? Services How do they change over time? Dynamics Why are they long-lasting? Sustainability Can we sustain them? Stewardship

Ecosystem Structure

Interacting Unit

What are the Biotic and Abiotic components? How do we begin to understand this complexity?

Look for patterns of organization

Biotic Components

Ecological Hierarchy

The Hierarchy of Life

The Ecological Hierarchy

- Organism

 Population
 Habitat
 Niche
 - **Biotic Community**
- Ecosystem
- Landscape
- Biome

In a typical SF Bay Area natural landscape with mixed forests, grassland meadows with California poppy and chaparral

Organism

Biological Species Interbreeding organisms

- Differ in small visible details
- Often determined by genetics

Population

Group of Individuals of the <u>same species</u> in a <u>given location</u>

Habitat

 Place where a species (individual or population) is typically found

- Environment that meets the species needs
 - E.g., California Poppy's habitat requirements
 - Open to sunshine
 - Wet winter, Dry summer (Mediterranean)
 - Moderate temperatures and rainfall
 - Poor soil okay
 - Insects to reproduce
 - Typical of "Mediterranean" Grasslands

Biotic Community

Multiple species (populations) (bacteria, protists*, fungi, plants & animals) Living together in a particular area - Exposed to the same Abiotic environment Interacting with each other E.g., grassland community

Cathartes aura -Florida -USA -flying-8-4c

*Protists are single-celled organisms, e.g., amoeba

How can so many species live and thrive in the same space?

Robbin Thor

Yathin S Krishnappa, via Wikipedia.org

They avoid competition by occupying an Ecological Niche

The specific way a species uses the habitat
Enabled by special adaptations
Gives rise to roles in ecosystem
e.g., hunter, pollinator, grazer, de-tri-ti-vore

R. Curtis/VIREO

Yathin S Krishnappa, via Wiking Alige Commons

Ecosystem

Interacting Biotic communities + Abiotic environment

- Large Scale (over large areas): Grasslands, Chapparal
- Small Scale (over small areas): Rotting log
- **Ecosystem is the Basic context of life**
 - Can organisms survive without an intact ecosystem?
 - Organisms need habitats
 - Habitats are part of biotic communities
 - Biotic communities rely on the abiotic environment

Tropical Rain Forest

monteverdeinfo.com/sky-walk.htm

Coastal Ocean – Coral Reef

Further Examples

Ecosystems and Niches

Landscape

Ecosystems are not isolated - Abiotic conditions vary in a given region Supports multiple ecosystems in the region Multiple Ecosystems in a region interact as a unit – Landscape Processes that move matter and energy E.g., Flowing rivers, wind, moving animals No clear boundaries between ecosystems in a landscape The boundaries blend creating regions called **Ecotones & Edges**

The Ecological Hierarchy

Organism (Individual of a particular Species) — Population (Group of individuals of a particular species in a particular location)

- Habitat (Life requirements of species)

Niche (Special way species live in the habitat)

 Biotic Community (Populations of multiple species in a location, evolved together)

Ecosystem (Biotic communities existing together)
 Landscape (interacting Ecosystems in a given location)
 Biome (global collection of all ecosystems of one type)

...A unit of interacting Ecoystems The SF Bay bandscope

What do you see?

Abiotic Components

Environmental <u>Factors</u> Vary in Space and time

Environmental <u>Conditions</u>	Environmental <u>Resources</u>
Not consumed	Consumed
Examples	<u>Examples</u>
Temperature	Food
Wind	Water
Acidity	Oxygen
Salinity	Carbon Dioxide
Humidity	Space
Light	Minerals

Environmental Factor Condition or Resource? Depends on the situation!!

Water

Abiotic Environmental Factors

List all the abiotic <u>conditions</u> of this place

Abiotic Environmental Factors

List all the abiotic <u>resources</u> of this place

Abiotic Factors Impact Ecosystems

Through Growth of Species

- Growth of Individuals (to reproduce)
- Growth of population (species viability)

Through Cascading Impacts

• How does this species impact other species?

A Fundamental Biological Principle Every species has, for every abiotic factor Optimal Range, Limits of Tolerance, Zones of Stress

- Similar abiotic environments support similar biotic communities
 - Climate (temperature, rainfall), Geography (latitude, altitude, aspect), Soils
 - Similar Ecosystems are replicated in different parts of the globe
- E.g., Tropical Rain Forests
 - Occur in areas of high humidity and high temperatures
 - Near the equator all around the globe

Terrestrial Biomes

Aquatic Biomes

Similar aquatic abiotic environments support similar aquatic ecosystems around the globe

- Water depth, Water flow , Salinity
- Example
 - Deep ocean: Past the continental shelf, deep water, high salinity
 - Coastal ocean: Shallow water, in photic zone, Coral reefs, Kelp forests

Class 5 Team Activity: Ecosystem Structure

Source: Textbook, Environmental Science, Wright & Boorse, 12th Ed.

- Fill out the abiotic factors and biotic factors that characterize each of the ecosystems listed.
- List at least two places in the world where you would find them.
- When you return to class, write down your team name under one terrestrial biome OR one aquatic biome that you will present to the class.

Terrestrial Ecosystems in CA

- Desert: *Death Valley*
- Temperate Forest: *Redwood National Park in Northern California*
- Grasslands (mostly converted): Central Valley, CA
- Rivers and Streams: Coyote Creek, Stevens Creek
- Saltwater Marsh: Palo Alto Baylands
- Lakes (Natural): Lake Tahoe, Crater Lake
- Deep Ocean: Pacific Ocean
- Coastal Ocean: Along CA Coast

Ecosystems - Structure

Part 2