1:30 – 2:15 Lecture: Ecosystem Function – Biogeochemical cycles

2:30 – 3:20 Video: How Nature Works – Grasslands

1. Biome research and presentation

- Individual summary due Next Tuesday, May 7
- Are all the team members contributing?
- Presentation date: <u>Tues, May 14</u> and <u>Thu, May 16</u>
- Guidelines on pages 5, 6 of syllabus. Do you have it?
- 2. Quiz 1
 - Thursday, May 2
 - Based on Lectures, videos, activities

Symbiosis

<u>Close, long-term relationship</u> between two organisms of <u>different species</u> in an ecosystem

Mutualism: Both organisms benefit and depend each other

- Humans and beneficial gut bacteria
- Impala (pest control) and Oxpecker bird (food

Parasitism: One organism benefits (parasite) at the expense of the other (host)

- Humans and mosquitoes
- Acacia tree and Cuscuta aka dodder plant (food)

Commensalism: One organism benefits, the other is neither harmed nor benefitted

- Humans and mites (food)
- Zebra shark and Remora shark (hitches a ride)

Important Species in Ecosystems

Keystone Species: A

species that is crucial for the health of an ecosystem.

E.g., Corals in a Coral Reef ecosystem, Apex predators in terrestrial ecosystems Indicator Species: The health of this species indicates the health of the over all ecosystem. E.g., Amphibians in wetland ecosystems

Ecosystems – Function

Energy & Nutrient Flow in Ecosystems Bio-geochemical cycles

Matter and Energy Laws

LAW OF CONSERVATION OF MATTER:

Matter can neither be created nor destroyed

- The NUMBER AND TYPE OF ATOMS ARE THE SAME before/after chemical reaction

Two main forms of energy:

Potential (e.g., gravitational, electrical, chemical, light) and Kinetic (e.g. wind, heat).

LAW OF CONSERVATION OF ENERGY (1st Law of Thermodynamics)

Energy can neither be created nor destroyed

- Energy can be transformed between the various forms
- E.g., Photosynthesis transforms chemical and light energy to chemical energy
- E.g., Cell respiration transforms chemical energy to chemical energy + heat

LAW OF INCREASING ENTROPY (2nd Law of Thermodynamics)

Entropy of a closed system can never decrease

- The amount of usable energy in a system decreases every time energy is transformed
- Energy has to be supplied to the system for it to continue to work
- E.g., Ecosystems are sustainable so long as the sun's energy is available (sometimes energy is supplied by heat generating processes on Earth, e.g., volcanic activity under the sea)

Nutrient and Energy Cycling in the Biosphere

Ecological Hierarchy

<u>ONE WAY</u> transfer of energy <u>CYCLING</u> of nutrients <u>Food Chain</u>: Involves <u>organisms</u>

Trophic levels & categories:

1: Producer, 2: Primary Consumer (aka Herbivore in land-based), 3: Secondary Consumer (aka Carnivore in land-based), 4: Tertiary Consumer, ... (Omnivore: Herbivore & Carnivore)

Food Web

Efficiency of Nutrient and Energy Transfer; Biomass

Nutrient Cycling and Earth's Systems

Are there other key nutrients required by living systems?

- Yes! Photosynthesis alone is not enough!
- What are they?

How do the nutrients become available to the Biosphere?

- Through Bio-geochemical cycles
- What are these cycles?

The Key Nutrients Chemical Basis of Life on Earth

Nutrient	Symbol	Used in
Carbon	С	DNA, Proteins, Carbohydrates
Oxygen	0	DNA, Proteins, Carbohydrates
Water	H ₂ O	All cells and circulatory system
Nitrogen	Ν	DNA, Proteins
Phosphorus	Ρ	DNA, Proteins
Sulfur	S	Proteins
Minerals (Calcium, Iron, Sodium, Potassium,)	Ca, Fe, Na, K	Proteins, as ions in electrochemical processes

BioGeochemical Cycles

- Processes in the Earth's Systems that
- Produce (Sources) and/or Consume (Sinks) key nutrients
- To make them Available for Life systems
- And keep them in **BALANCE**

The Carbon Cycle

Involves Energy and Matter Transfer Between all the Earth Systems

What are the sources and sinks for atmospheric Carbon

The Carbon Cycle

Human Impact

Human Impact Excess Greenhouse Gases (GHG) in Atmosphere

Carbon containing **GHG:** Carbon dioxide (CO₂) and Methane (CH₄)

Large sources of Carbon

- Burning fossil fuels for Energy, Transportation, Buildings release CO₂
- Industrial Meat Production, Oil & Gas Operations release CH₄
- Deforestation by logging and burning for agriculture and urbanization is a "Double Harm"
 - Combustion releases CO₂
 Rotting plants release CH₄
 - Reduced Photosynthesis
 Decreases C absorption

Consequences

Climate Change

- Warming of Atmosphere +
 Warming of Land and Oceans
- Change Air Currents and Water
 Currents in the Oceans
- Ocean Acidification
 - More CO2 in Atmosphere =
 More CO2 in Ocean =
 More <u>Carbonic Acid</u> in Ocean
 - Corals pushed beyond Limits of Tolerance for Acidity
 - Corals Bleach and Leads to a Trophic Cascade

Nitrogen Cycle

All life needs Nitrogen - N

Abundant source: Atmospheric N_2 gas

- Is a Molecule N-N
- N-N bond is triple strength
- Very unreactive, not easily used in biochemical reactions
- So most organisms cannot use this form directly
 - Need to convert N-N to N atoms
 - How?
 - Nitrogen Fixing Bacteria

Bio-Availability of N

How does atmospheric N get into the Ecosystem?

Nitrogen Cycle

Nitrogen Cycle

List all the sources and sinks for Nitrogen in the environment

Human Impact – Eutrophication (fertilizing)

Local Environmental Impact: Coyote Ridge Serpentine Grassland Ecosystem

Cities

arms

Too much NO₂ in the air \rightarrow

Native Grasslands \rightarrow \rightarrow Invasive grasses High diversity ecosystem

- \rightarrow Soil deposition with rain **Eutrophication of Soil**
- Thrive in N-poor soils Thrive in N-rich soils Low diversity monoculture

Dead Zone

- NO₃ fertilizer leaches to nearby rivers and to major rivers leading to the sea
- **Eutrophication of water bodies** \mathbf{O}
- Excessive algal growth sucks the O₂ out of the water (respiration)
- O₂ depletion in ecosystem, killing other organisms
- **Coastal Oceans and inland water bodies** get Dead Zones

Human Impact – Too Much
Biggest source of phosphorus increase
From excess fertilizer runoff
3x increase in oceans and lakes!
Leads to <u>EUTROPHICATION</u>

Sulfur Cycle

List all the sources for Sulfur in the environment

Sulfur Cycle

Nature Reviews | Microbiology

Human Impact – Acid Rain

- Sulfur occurs naturally in the lithosphere
- Gets into atmosphere as Sulfur dioxide (SO₂)
 - Volcanic eruptions
 - Burning fossil fuels
- SO₂ mixes with rain water
 - ACID RAIN
 - Kills off trees
- 1980, Acid Precipitation Act

Planetary Boundaries

Nature has Optimal Range & Limits of Tolerance

- <u>Time scales</u> of Bio-geochemical cycles and <u>amounts</u> of nutrients in the earth's systems are in <u>balance</u>
- This is the safe operating space for humanity
- Planetary Boundaries
- When Nature pushed beyond Planetary Boundaries
 - Nature enters a Zone of Stress
 - Cannot recover
 - Reaches a Tipping Point
- How to operate within Planetary Boundaries?
 - Sustainability is key
 - E.g., Limit industrial and agricultural fixation of N Switch towards Organic Agriculture

Video: How Nature Works Grassland

• Attach Activity Sheet to your journal and answer the questions

Class 08 In-class Activity Matter and Energy Flow in Grasslands

Answer the following questions based on the video "How Nature Works -Grasslands" (Source: De Anza Library web page, *Films on Demand* section. Search for *How Nature Works*.)

- 1. Where are grasslands found in the world?
- 2. Why is tall grass less nutritious than new grass? How have the Wildebeest adapted to deal with it?
- 3. How does the White Rhino impact the grassland? List at least 4 species it supports.
- 4. How is the Brazilian grassland different from the Savannah? How does this impact the consumers? Explain with the Maned Wolf as an example.
- 5. Draw the *food chains* involving the Maned Wolf. Specify its *trophic category* in each.
- 6. What was the highlight of the video for you and why?