Instructor:	Hassan. Bourgoub
Course Name:	Linear Algebra
CRN/Section	25Z and 50Z
Classroom	Online
Time:	M-Th, 3:00pm $-5: 30 \mathrm{pm}$
Office Hours	None
Email:	Canvas Inbox for any class communication
Text	Calculus-W/Webassign, by Stewart, Edition 9e
PREREQUISITES	

DeAnza Math 001C with grade of C or better or the equivalent.

Minimum Requirements

Attendance

Perfect attendance is required of every student. You are expected to be in class daily on time and remain through the duration of class. Call every time you miss class. Two consecutive absences may constitute dismissal from class. In the event, you decide to withdraw from the course, it is your sole responsibility to fill out a drop sheet and submit it to the records office.

Test performance

Satisfactory performance on tests and the final exam are necessary for passing the course.

Homework:

Homework is an integral part of the course. It is very unlikely for most students to succeed in this class without completing all homework assignments on time. We will use Web-Assign website for course homework and access to the textbook. You are to purchase an access code separately or bundled with a new textbook. The due date for each assignment is available on the site. All due dates are set approximately four days after the relevant material is discussed in class. The fixed due date used to allow for uniform distribution of course load throughout the quarter. Each assignment comprises homework credits equal to the number of problems in the assignment. These credits will be scaled at the end of the quarter for a maximum of 100 course points.

Only one extension, that expires in three days, is allowed per assignment and it is done automatically with a 20% penalty.

Written Assignments:

The writing assignments correspond to the sections covered in the textbook. These assignments are available, in PDF format, on my web page under the Assignment Link next to the course schedule. Print each assignment back-to-back and bring with you to the classroom based on the daily schedule for the course. These assignments are not collected, but they are used to create the three written exams during the quarter.

We are going to have three tests, three quizzes and a final exam. The tests are worth 50 points each, and the total number of points for the quizzes is 50 , and the final exam counts for 100 points. There will be no makeup exams. The final exam will be comprehensive and mandatory. Dates for all tests and quizzes are available on the course schedule on Canvas Modules.

Distribution of Course Grade

Quizzes 50 pts
Tests 150 pts

Mylab Math 100 Pts
Final Exam 100 Pts

Total 400 pts

Materials

The required text mentioned above, a TI84 calculator or the equivalent, lose paper, pencils and a ruler are required course materials.

Academic Integrity

Refer to Schedule of Classes on college policy under subtitle Academic Integrity; in addition, cheating and plagiarism is not tolerated and will be decisively met with grade F for test/ assignment, and, or dismissal from class depending on the circumstances.

Grading:

The course grade is based on the fixed scale below. Grades are not given to you; they are earned by your desire and willingness to be consistent, persistent, and hardworking. There are three components to the total grade in this course, in-class tests and Quizzes, homework, and a final exam. The Final letter grade is based on the scale below.

Grade Scale

Letter Grade	Range
A+	98% and above
A	$94 \%-97 \%$
A -	$90 \%-93 \%$
B +	$87 \%--89 \%$
B	$84 \%-86 \%$
B-	$80 \%--83 \%$
C+	$72 \%-79 \%$
C	$65 \%--71 \%$
D	$50 \%--64 \%$
F	below 50%

Good Luck

Student Learning Outcome(s):

- Apply analytic, graphical and numerical methods to study multivariable and vector-valued functions and their derivatives, using correct notation and mathematical precision.
- Use double, triple and line integrals in applications, including Green's Theorem, Stokes' Theorem and Divergence Theorem.
- Synthesize the key concepts of differential, integral and multivariate calculus.

Office Hours:

